martes, 10 de mayo de 2011

bienvenidos a mi blogger

hola amiguitos:
 Bienvenidos a todos los visitantes de este presente blogger  :
les saludo muy atentamente , y darles a conocer sobre todo lo que es radiactividad como caso , connsecuencias , problemas y sobre todo ¿ que es radiactividad?.
espero que sea muy importante y util para sus conocimientos


definicion de radiactividad

la radiactividad:

Propiedad que tienen ciertos elementos químicos (radio, uranio, etc.) de transformarse espontáneamente en otros elementos, con emision  de determinadas radiaciones. propiedad de ciertos cuerpos de emitir radiaciones corpusculares alfa, o beta o radiaciones electromagnéticas gamma como consecuencia de la desintegración nuclear

La radiactividad es una propiedad de los isótopos que son "inestables", es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental.


 




La radiactividad puede considerarse un fenómeno físico natural por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como pueden ser núcleos de helio,electrones o positrones, protones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos, que son capaces de transformarse en núcleos de átomos de otros elementos.

videos de la radiactividad


tipos de radiactividad:
Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Son desviadas por campos eléctricos y magnéticos. Son poco penetrantes, aunque muy ionizantes. Son muy energéticas. Fueron descubiertas por Rutherford, quien hizo pasar partículas alfa a través de un fino cristal y las atrapó en un tubo de descarga. Este tipo de radiación la emiten núcleos de elementos pesados situados al final de la tabla periódica (A >100). Estos núcleos tienen muchos protones y la repulsión eléctrica es muy fuerte, por lo que tienden a obtener N aproximadamente igual a Z, y para ello se emite una partícula alfa. En el proceso se desprende mucha energía, que se convierte en la energía cinética de la partícula alfa, por lo que estas partículas salen con velocidades muy altas.

Son flujos de electrones (beta negativas) o positrones (beta positivas) resultantes de la desintegración de los neutrones o protones del núcleo cuando éste se encuentra en un estado excitado. Es desviada por campos magnéticos. Es más penetrante, aunque su poder de ionización no es tan elevado como el de las partículas alfa. Por lo tanto, cuando un átomo expulsa una partícula beta, su número atómico aumenta o disminuye una unidad (debido al protón ganado o perdido). Existen tres tipos de radiación beta: la radiación beta-, que consiste en la emisión espontánea de electrones por parte de los núcleos; la radiación beta+, en la que un protón del núcleo se desintegra y da lugar a un neutrón, a un positrón o partícula Beta+ y un neutrino, y por último la captura electrónica que se da en núcleos con exceso de protones, en la cual el núcleo captura un electrón de la corteza electrónica, que se unirá a un protón del núcleo para dar un neutrón.
Radiación gamma (c): Se trata de ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta. Por ser tan penetrante y tan energética, éste es el tipo más peligroso de radiación.

peligros de la radiactividad

Peligros de la radiactividad:

La radiactividad puede ser peligrosa y sus riesgos no deben tomarse a la ligera. Puede dañar las células del organismo y la exposición a altos niveles, puede ser nociva e incluso fatal si se trata de manera inadecuada, por eso lleva un largo proceso de investigación y descubrimientos abriéndose las puertas de la era nuclear.
Después de muchos años de investigación, desarrollo y aplicaciones industriales, hoy se puede afirmar que existen soluciones tecnológicas bastante seguras para manejar adecuadamente los desechos radiactivos. Estos no solo provienen de los reactores que generan electricidad, sino también de los hospitales, la industria, la agricultura y la investigación, como ya se estudió en los apartados anteriores donde se conocieron las aplicaciones de la radiactividad en esos campos.





aplicaciones de la radiactividad



Aplicaciones de la radiactividadEn nuestros días, las aplicaciones de la radiactividad son cada vez más numerosas:

La Arqueología, la Geología y la Antropología emplean métodos de datación de objetos y sucesos históricos utilizando el carbono 14 u otros isótopos, que permiten definir una edad para los acontecimientos que describen la historia de la Tierra, su clima y los seres vivos que la habitaban.
Menos conocido es el uso de la activación neutrónica para, por ejemplo, determinar las rutas comerciales de la antigüedad mediante el análisis de los elementos contenidos en fragmentos de cerámica, o de la técnica denominada de fluorescencia de rayos X para analizar las características básicas de las pinturas o tintas utilizadas en cuadros y manuscritos.
En Biología, numerosos adelantos realizados durante la segunda mitad del siglo XX están vinculados a la utilización de radiactividad. Entre los más importantes hay que destacar el funcionamiento del genoma humano y de otros animales, el metabolismo celular o la transmisión de mensajes químicos en el organismo.

La radiactividad cubre un abanico de aplicaciones tan amplio que pocas tecnologías pueden compararse con ella. Abarca desde la prehistoria al estudio del genoma o la curación del cáncer.
En Medicina la radiactividad es usada como método de diagnóstico (rayos X, estudios metabólicos con sustancias trazadoras, tomografía axial computerizada y tomografía por emisión de positrones) y de curación (los tratamientos de radiactividad contra el cáncer curan a miles de personas cada año). Se utiliza cotidianamente en investigación (estudio del funcionamiento de sustancias relevantes para la vida, como son los aminoácidos, el ADN, los azúcares, las penicilinas, etc., mediante el uso de núcleos radiactivos trazadores). Sirve para entender cómo funciona el cerebro, qué acción realizan los medicamentos. De igual forma, las radiaciones pueden destruir las células tumorales.
En Agricultura se utilizan las técnicas con sustancias trazadoras para analizar las funciones de fertilizantes, hormonas, herbicidas, pesticidas, etc.; con sustancias radiactivas se pueden producir mutaciones que mejoren cosechas o erradicar plagas.

En la Industria, los rayos X y la radiación gamma se usan para la detección de defectos en fundición y soldadura y la medida de espesores de láminas de los más variados materiales. Los trazadores permiten el análisis de problemas tales como el desgaste de los neumáticos de los automóviles, la detección de fugas en tuberías subterráneas, la determinación de la eficacia de los detergentes, etc.

Los contenidos de partículas materiales en el aire, de gran importancia en Ecología para la determinación de los niveles de polución atmosférica, pueden analizarse con la técnica que se denomina activación neutrónica.


Otras muchas aplicaciones de la radiactividad pueden catalogarse de curiosas, la utilización de sustancias radiactivas en detectores de humo o en pararayos (estos últimos ya prácticamente erradicados a pesar de su eficacia).



centrales de la radiactividad

Centrales nucleares en España:

Artículo principal: Energía nuclear en España
Centrales nucleares en España:[11]
Instalaciones nucleares en España.
·         Santa María de Garoña. Situada en Garoña (Burgos). Construida entre 1966 y 1970. Puesta en marcha en 1970. Tipo BWR. Potencia 466 MWe. Su refrigeración es abierta al río Ebro. Cierre programado para julio de 2013.[12]
·         Almaraz I. Situada en Almaraz (Cáceres). Puesta en marcha en 1980. Tipo PWR. Potencia 980 MWe. Su refrigeración es abierta al embalse artificial (creado para ese fin) de Arrocampo.
·         Almaraz II. Situada en Almaraz (Cáceres). Puesta en marcha en 1983. Tipo PWR. Potencia 984 MWe. Su refrigeración es abierta al embalse artificial (creado para ese fin) de Arrocampo.
·         Ascó I. Situada en Ascó (Tarragona). Puesta en marcha en 1982. Tipo PWR. Potencia 1.032,5 MWe.
·         Ascó II. Situada en Ascó (Tarragona). Puesta en marcha en 1985. Tipo PWR. Potencia 1.027,2 MWe.
·         Cofrentes. Situada en Cofrentes (Valencia). Puesta en marcha en 1984. Tipo BWR. Potencia 1.097 MWe.
·         Vandellós II. Situada en Vandellós (Tarragona). Puesta en marcha en 1987. Tipo PWR. Potencia 1.087,1 MWe.
·         Trillo. Situada en Trillo (Guadalajara). Puesta en marcha en 1987. Tipo PWR. Potencia 1.066 MWe.
Proyectos paralizados en la moratoria nuclear:
·         Lemóniz I y II (Vizcaya).
·         Valdecaballeros I y II (Badajoz).
·         Trillo II (Guadalajara).
·         Escatrón I y II (Zaragoza).
·         Santillán (Cantabria).
·         Regodela (Lugo).
·         Sayago (Zamora).
Centrales desmanteladas o en proceso de desmantelamiento:
·         Vandellós I. Situada en Vandellós y Hospitalet del Infant (Tarragona). Puesta en marcha en 1972. Clausurada en 1989. Potencia 480 MW.
·         José Cabrera. Situada en Almonacid de Zorita (Guadalajara). Puesta en marcha en 1968 y parada definitiva en 2006. Tipo PWR. Potencia 160 MW.

Centrales nucleares en países latinoamericanos

Centrales nucleares en Argentina:

·         Atucha I. Situada en la ciudad de Lima, partido de Zarate, distante a 100 km de la ciudad de Buenos Aires, Provincia de Buenos Aires. Tipo PHWR. Potencia 335 MWe. Inaugurada en 1974. Fue la primera central nuclear de Latinoamérica destinada a la producción de energía eléctrica de forma comercial.
·         Atucha II. Situada en la ciudad de Lima, partido de Zarate, distante a 115 km de la ciudad de Buenos Aires, Provincia de Buenos Aires. Tipo PHWR. Potencia 692 MWe. En fase final de construcción. Está prevista su entrada en servicio durante (2011).[13]
·         Embalse. Situada en Embalse, Provincia de Córdoba. Tipo PHWR. Potencia 648 MWe. Inaugurada en 1984.

Centrales nucleares en México:

·         Laguna Verde I en Punta Limón, Veracruz, México. Inaugurada en 1989. Potencia: 1365 MWe.
·         Laguna Verde II en Punta Limón, Veracruz, México. Inaugurada en 1995.
·         Centro Nuclear Dr. Nabor Carrillo Flores en Ocoyoacac, Estado de México, México. Inaugurada en 1968. Potencia: 1000 KWe